THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING Grid Code Testing of Wind Turbines by Voltage Source Converter Based Test Equipment

نویسنده

  • NICOLÁS I. ESPINOZA
چکیده

Wind energy is expected to play a crucial role in the energy mix in the future society with limited access to fossil fuels. Wind turbines with larger power rating are being installed every year, making possible to extract more energy from wind. In countries where wind power has become a relevant part of the total generated electrical power production, transmission system operators (TSOs) have included in their grid codes specific technical requirements for interconnection of wind power plants. Today, grid code requirements are tested by using an impedance-based testing equipment which is limited to voltage dips and swells. For this reason, many of the requirements remain unverified. The use of fully controllable converter systems operated as test equipment allows for a wide variety of tests that can be carried out on the generating unit. For this reason, a different approach of grid code testing methodology is investigated in this thesis. The investigated testing setup consists of a 4 MW wind turbine and an 8 MW testing equipment constituted by a set of voltage source converter (VSC) in back-to-back configuration. In particular, this thesis focuses in the Low Voltage Ride Through (LVRT) test of full-power converter (FPC) wind turbines. In this work, a detailed description of the technical requirements included in grid codes for interconnection of the wind power plant with the grid is given. The control algorithm that governs both the testing equipment and the wind turbine are derived in detail, with special focus on the control scheme of each VSC. The risk for poorly damped resonances and possible interaction between the testing equipment and the tested object is investigated through small signal analysis. The grid code testing methodolgy is then validated through time domain simulation where all the sub-systems that constitute the testing setup are integrated in one simulation model. The obtained results demonstrate the flexibility of the proposed approach in controlling the voltage at the wind turbine terminals, including the ability in emulating the short-circuit impedance of the grid at the connection point. Furthermore, laboratory experiments are carried out in order to verify the investigated methodology. Finally, field test of the actual testing facility in Gothenburg, Sweden are included in this thesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GA-Based Optimal LQR Controller to Improve LVRT Capability of DFIG Wind Turbines

Nowadays, the doubly-fed induction generators (DFIGs) based wind turbines (WTs) are the dominant type of WTs connected to grid. Traditionally the back-to-back converters are used to control the DFIGs. In this paper, an Indirect Matrix Converter (IMC) is proposed to control the generator. Compared with back-to-back converters, IMCs have numerous advantages such as: higher level of robustness, re...

متن کامل

A New Control Method for Smoothing PMSG-based Offshore Wind Farm Output Power

Nowadays, propagation of wind turbines make challenges to supply safe power to the grid. Because of wind speed changes, supervisors are concerned to wind turbines, be able to produce appropriate electric power during the wind speed changes. As a matter of fact, investors are mostly like to invest on offshore wind farms, because of their more stable and continuous wind speed rather than onshore ...

متن کامل

Active and Reactive Power Management of Wind Farm Based on a Six Leg Tow Stage Matrix Converter Controlled by a Predictive Direct Power Controller

In this paper we propose a new configuration of the wind farm connecting with an electrical grid. The proposed Wind Energy Conversion System (WECS) is based on a two stages six-leg matrix converter using to drive a two Doubly Fed Induction Machines operating at different wind speeds. Each Doubly Fed Induction Generator (DFIG) is controlled through the rotor currents using the Finite Set Model P...

متن کامل

Efficient low-voltage ride-through nonlinear backstepping control strategy for PMSG-based wind turbine during the grid faults

This paper presents a new nonlinear backstepping controller for a direct-driven permanent magnet synchronous generator-based wind turbine, which is connected to the power system via back-to-back converters. The proposed controller deals with maximum power point tracking (MPPT) in normal condition and enhances the low-voltage ride-through (LVRT) capability in fault conditions. In this method, to...

متن کامل

تحلیل و بهبود قابلیت ایستادگی توربین بادی با ژنراتور القایی دو سو تغذیه در برابر افتادگی نامتقارن ولتاژ

DFIG based wind turbines (WTs) are very sensitive to grid voltage dips. This is because the grid voltage dips imposed at the connection point of the DFIG to the grid induce large voltages in the rotor windings, resulting in high rotor current. According to high penetration of DFIG based WTs, it is important that the WTs remain connected to the grid during the voltage dips and improve the grid s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015